

DAILY CURRENT AFFAIRS 19-03-2025

GS-1

1. Chhareda Panchayat Water Conservation Model

GS-2

2. Evaluating the UN's Effectiveness in Conflict Resolution and Peacekeeping

GS-3

- 3. Subacute Sclerosing Panencephalitis
- 4. Supersolid Light
- 5. Hyperloop Technology

Chhareda Panchayat Water Conservation Model

Syllabus: GS-1: Geography - Water Conservation

Context:

- > The Chhareda panchayat in Dausa district, Rajasthan, has emerged as a model for water conservation through farm pond initiatives.
- ➤ Led by IIT-Kharagpur alumnus Vipra Goyal, the initiative has resulted in the construction of 250 farm ponds, addressing groundwater depletion and water scarcity.

Key Features of the Water Conservation Model

- > **Focus:** Construction of farm ponds to **harvest rainwater** and reduce dependence on deep, contaminated groundwater.
- > Objective: Ensure sustainable water management and enhance agricultural productivity in a water-stressed region.

How Farm Ponds are Addressing Rajasthan's Water Crisis

> Rainwater Harvesting

 Farm ponds store rainwater, reducing the reliance on overexploited and contaminated groundwater sources.

> Year-Round Water Supply

 Ensures water availability for both kharif and rabi crops, securing farmers' livelihoods.

Groundwater Conservation

 The initiative has conserved around 30 crore litres of groundwater annually.

> Increased Farmer Income

- Farmers have shifted from subsistence farming to cash crop production.
- Collective household incomes have increased by ₹5 crore.

Reduced Water Pollution

 Avoids the use of groundwater contaminated with arsenic and fluoride, ensuring safer irrigation.

> Sustainable Agriculture

 Provides a climate-resilient and long-term solution for water conservation in arid regions.

Cost-Free for Farmers

 Farm ponds are constructed using CSR funds and government schemes, ensuring no financial burden on farmers.

Significance of the Model

- > Serves as a **replicable model** for other drought-prone regions.
- Aligns with water conservation goals under government initiatives like Jal Shakti Abhiyan.
- > Strengthens **rural economy and food security** by ensuring sustainable agricultural practices.

This model showcases how **community-driven efforts** and **public-private partnerships** can play a crucial role in **water conservation and rural development**.

Evaluating the UN's Effectiveness in Conflict Resolution and Peacekeeping

Syllabus: GS-2: International Relations - UNO and related topics.

Context:

- The United Nations (UN) was established to maintain global peace and security.
- ➤ It employs diplomatic conflict resolution and, when necessary, armed intervention.
- > Despite its mandate, the UN has had mixed success, with notable failures in Rwanda, Bosnia, Ukraine, and West Asia.
- > Institutional limitations, particularly in the UN Security Council (UNSC), often prevent decisive action.

Legal Framework for Conflict Resolution in the UN Charter

Chapter VI - Peaceful Settlement of Disputes

- Encourages diplomacy, mediation, and negotiations.
- > Aims to resolve conflicts without military intervention.

Chapter VII - Use of Force for Global Security

- Empowers the UNSC to authorize military action when peace is breached.
- > Member states must contribute military or police forces to UN peacekeeping missions.

Chapter VIII - Regional Peace Enforcement

- Supports regional organizations in peace efforts.
- Requires Security Council approval for military interventions.

Success Stories: UN's Role in Peacekeeping

Key Successful Missions

- **Cambodia (UNTAC, 1992-93)** Oversaw elections and disarmament of factions.
- ➤ **Mozambique (ONUMOZ, 1992-94)** Monitored ceasefire and supported peace agreements.
- ➤ **Sierra Leone (UNAMSIL, 1999-2005)** Helped disarm 75,000 combatants and stabilized the region.
- > **Angola (UNAVEM, 1989-97)** Assisted in peace agreements and post-war reconstruction.
- **Timor-Leste (UNTAET, 1999-2002)** Supervised transition to independence.
- ➤ **Liberia (UNMIL, 2003-2018)** Disarmed warring factions and ensured democratic governance.
- **Kosovo (UNMIK, 1999-present)** Established a temporary administration and maintained peace.

Lessons from Successes

- Political will and international support are crucial.
- > Timely deployment of peacekeepers prevents further violence.
- > Effective disarmament and post-war reconstruction contribute to long-term stability.

Major Failures: UN as a Passive Observer

Rwanda Genocide (1994)

- Nearly 1 million Tutsi civilians massacred in 100 days.
- UN peacekeepers lacked authorization to intervene, rendering them ineffective.

Bosnia (1995) - Srebrenica Massacre

- > The UN declared Srebrenica a "safe zone."
- Failed to prevent the massacre of 8,000 Bosniak Muslims by Serbian forces.

Key Lessons

> The UN has the legal mandate to protect civilians but often lacks the political will and operational authority.

Bureaucratic delays and lack of decisive action can lead to humanitarian disasters.

Recent Conflicts: UN's Bystander Status

Russia-Ukraine War (2022-present)

- Over 100,000 UN peacekeepers exist globally, yet none were deployed to Ukraine.
- Russia's veto in the UNSC blocked any meaningful intervention.

Israel-Gaza Conflict (Ongoing)

- > Despite civilian casualties, UN forces have not been deployed.
- ➤ Historical success in missions like Cyprus and Timor-Leste shows that even small UN deployments (6,000–9,000 personnel) could stabilize the situation.

Missed Opportunities

- ➤ Had UN peacekeeping forces been deployed, humanitarian crises could have been mitigated.
- > The Security Council's political deadlock prevents timely intervention.

Challenges in the UN Security Council

Veto Power Problem

- ➤ The five permanent members (P5) U.S., U.K., France, Russia, and China hold veto power.
- > Example:
 - Russia vetoed UN resolutions on Ukraine.
 - The U.S. has vetoed resolutions related to Israel.
- This paralyzes UN action in humanitarian crises.

Lack of Global South Representation

Countries like India and South Africa, despite major contributions to UN peacekeeping, lack permanent representation in the UNSC.

Proposed Reforms

- Expand the UNSC's permanent membership to include India and South Africa.
- > Introduce a majority-based voting system to prevent one-nation veto blocks.
- > Create emergency mechanisms to override vetoes in cases of genocide or humanitarian crises.

The Future of UN Peacekeeping: Reforms Needed

Deploy Peacekeeping Forces Proactively

> UN forces should be sent before conflicts escalate rather than after.

Strengthen Mandates for Civilian Protection

> Missions like Kosovo and Timor-Leste show that small but decisive UN forces can prevent humanitarian disasters.

Make the Security Council More Representative

> Reform the UNSC to prevent deadlock in humanitarian crises.

Increase Peacekeeping Fund Allocation

> Ensuring well-equipped and operationally effective peacekeeping missions.

Conclusion

- > The UN's institutional limitations, particularly within the Security Council, have often rendered it ineffective in preventing and resolving conflicts.
- > Structural reforms, including UNSC expansion, veto reform, and proactive peacekeeping, are crucial.
- Without decisive changes, the UN risks losing its credibility as a global peacekeeping body.

Subacute Sclerosing Panencephalitis

Syllabus: GS-3: General Science - Diseases.

Context:

> Recent Outbreaks & Concerns:

- Measles outbreak in Texas and New Mexico has led to nearly 300 cases, primarily among unvaccinated children.
- Experts warn of potential rise in SSPE cases following measles resurgence.

> India-Specific Concerns:

- SSPE remains a public health concern in Lucknow and Uttar Pradesh due to low measles vaccination coverage.
- The persistence of the disease highlights gaps in India's immunization programs.

About Subacute Sclerosing Panencephalitis (SSPE)

- A rare, progressive, and usually fatal **neurodegenerative disorder** caused by a **persistent measles virus infection** in the brain.
- Occurs several years after a person has recovered from measles, due to mutated or defective measles virus strains persisting in the nervous system.

Epidemiology & Prevalence

- > Reported **worldwide**, but rare in Western countries due to high measles vaccination coverage.
- ▶ More common in **developing nations** where measles immunization is low.
- > Males are more affected than females.
- > Primarily affects **children and adolescents (5-15 years)**.

Cause of SSPE

- ➤ The normal measles virus does not typically cause brain damage.
- > SSPE occurs due to:
 - o **Abnormal immune response** to measles virus.
 - o **Mutated or variant strains** of the measles virus persisting in the brain.
 - Delayed measles virus clearance, leading to chronic inflammation and neurological damage.

Symptoms of SSPE

> Early Stage:

- o **Cognitive decline** (poor school performance, forgetfulness).
- o **Behavioral issues** (temper outbursts, hallucinations).
- Sleep disturbances (sleeplessness).

Progressive Stage:

- Motor dysfunction (sudden muscular jerks, abnormal muscle movements).
- Seizures and loss of speech function.

➤ Advanced Stage:

- Severe rigidity of muscles.
- Swallowing difficulties, leading to choking and pneumonia.
- o **Blindness** in some cases.

Final Stage:

o Irregular body temperature, blood pressure, and pulse.

• **Coma and death** due to progressive brain deterioration.

Diagnosis

- **Clinical symptoms** and history of measles infection.
- **EEG (Electroencephalogram):** Shows characteristic brain wave patterns.
- > **MRI Scans:** Detects brain inflammation.
- > **CSF (Cerebrospinal Fluid) Analysis:** Shows elevated measles antibodies.

Treatment & Management

- ➤ **No cure** for SSPE; treatment is symptomatic.
- > **Antiviral drugs** and **immunomodulatory therapy** may slow progression.
- > Supportive care:
 - Anti-seizure medications.
 - Physiotherapy for motor symptoms.
 - o Nutritional and respiratory support.

Public Health Implications & Prevention

- > **High SSPE mortality rate** underscores the need for **early measles vaccination**.
- Measles-Rubella (MR) vaccine under India's Universal Immunization Programme (UIP) is crucial to prevent measles and SSPE.
- **WHO's Measles & Rubella Initiative:** Aims for **95% vaccination coverage** to eliminate measles.
- > Challenges in India:
 - Vaccine hesitancy and misinformation.
 - o Gaps in rural immunization outreach.
 - Need for stronger disease surveillance and reporting.

Way Forward for India

- > Strengthening Immunization:
 - Ensuring 100% MR vaccine coverage.
 - o Conducting **catch-up vaccination drives** in high-risk areas.
- > Public Awareness Campaigns:
 - Educating about measles complications like SSPE.
 - Combating vaccine misinformation.

- > Surveillance & Early Detection:
 - Enhancing disease tracking for early SSPE diagnosis.
 - o Strengthening rural healthcare systems.

Conclusion

- > SSPE is a **preventable but fatal** disease with **no cure**.
- > The **only effective solution** is **universal measles vaccination**.
- **Policy intervention & public health initiatives** are crucial to eliminate measles and prevent SSPE in India.

Supersolid Light

Syllabus: GS-3: Science and Technology – Recent Discoveries in Physics.

Context:

Scientists have successfully "frozen" light, demonstrating that it can exist as a supersolid—a rare state of matter combining solid-like structure with frictionless flow.

Supersolid Light - A Breakthrough in Quantum Physics

What is Supersolid Light?

- > A **rare quantum state** where light exhibits both:
 - Solid-like structure (rigid spatial arrangement).
 - o **Superfluid properties** (frictionless flow).
- > Previously, supersolidity was observed only in **Bose-Einstein Condensates** (BECs)—a state formed when bosons are cooled to nearly absolute zero.

How is Supersolid Light Formed?

- > Platform Used:
 - Scientists used gallium arsenide (GaAs) semiconductor structures with microscopic ridges.
- > Creation Process:
 - o A **laser beam** was used to generate **polaritons** (hybrid light-matter particles).
- > Key Observation:

www.india4ias.com

 At high photon counts, satellite condensates emerged, showing symmetric energy and opposite wavenumbers, confirming supersolidity.

Key Characteristics of Supersolid Light

- > **Solid-like lattice** structure in spatial patterns.
- > **Frictionless flow**, similar to a superfluid.
- > Exhibits **quantum coherence** and **long-range order** near absolute zero temperatures.
- Simultaneous symmetry breaking and superfluid behavior—a unique feature in quantum physics.

Significance of the Discovery

Advancements in Quantum Computing

- > Can improve **qubit stability**, leading to more reliable quantum processors.
- ➤ Helps in **reducing decoherence**, a major challenge in quantum computing.

Innovation in Optical and Photonic Devices

- > Potential applications in **photonic circuits** for high-speed, low-power computing.
- > Could lead to **next-generation optical technologies** with enhanced precision.

Fundamental Quantum Research

- Opens new avenues for studying quantum phase transitions and exotic states of matter.
- > Helps scientists understand quantum coherence and symmetry breaking in a new medium.

Precision in Quantum Control

- Allows for high-precision manipulation of quantum states of light.
- > Could revolutionize **quantum sensors** for ultra-precise measurements.

Potential Applications

- **Quantum Computing:** More robust qubits and stable quantum circuits.
- Advanced Optical Technologies: High-speed optical processing and low-energy photonic devices.
- **Quantum Sensing:** Ultra-precise measurement tools for scientific research.

Conclusion

The discovery of **supersolid light** bridges the gap between solid and superfluid quantum states, paving the way for breakthroughs in **quantum physics**, **computing**, **and advanced**

optics. It holds transformative potential for **next-generation technology** and **fundamental physics research**.

Hyperloop Technology

Syllabus: GS-3: Science and Technology – Transportation and Communication.

Context:

India's Hyperloop technology will be developed at Integral Coach Factory (ICF), Chennai, as announced by Railway Minister.

Hyperloop Technology Overview

Aspect	Details
Definition	Ultra-high-speed transportation system using magnetic levitation (maglev) and near-vacuum tubes.
Speed	Can reach up to 1,220 km/h.
Working Mechanism	 Uses low-pressure tubes with built-in vacuums to reduce air resistance. Magnetic levitation allows pods to hover, reducing friction. Electromagnetic propulsion drives the pod forward.
Key Features	- Energy-efficient with low emissions Faster than air travel on shorter routes Reduces road congestion and noise pollution.
Origin	- Concept proposed by Elon Musk in 2013 through the Hyperloop Alpha - Developed as open-source technology for global research.

Hyperloop Development in India

Aspect	Details
Institutions Involved	- IIT Madras - Testing and research. - Integral Coach Factory (ICF), Chennai - Development of electronics and technical components.
Ministry Involved	Ministry of Railways
Key Test Facility	IIT Madras – Longest Hyperloop test facility in Asia, showing promising results.
Aim	 Develop an indigenous Hyperloop system. Position India as a global leader in futuristic transport technology.
Companies Involved	 IIT Madras Avishkar Hyperloop Team – Leading the project. ICF Chennai – Engineering and technical development.